Разработать:
Блок возбуждения для дефектоскопии плоской поверхности ферромагнитных объектов.

Устройство включает в себя :

1. Генератор дискретной (синусоидальной) частоты с параметрами:

макс. диапазон частот:1КГц-2,5МГц
(рабочий диапазон частот задает оператор в пределах максимального);
ток: 10 мА;
число дискретов в диапазоне: от 10 до 20;
коэффициент гармоник не более 1 % :

2. Нагрузкой для генератора служит катушка размещенная на объекте контроля:

число витков возбуждающей катушки: 20;
число витков измерительной катушки: задается оператором от 10 до 20;
диаметр возбуждающей катушки: от 4 до 20 мм;
диаметр измерительной катушки: задается оператором от 4 до 20 мм;
длина катушек: от 2 до 15 мм:

Основные технические характеристики и условия эксплуатации:

* габариты: 100х50х100 (мм);
* масса: не более 0,3 кг;
* диапазон рабочих температур: от 5 до 45 оС;
* влажность: от 30 до 90%;
* давление: от 700 до 800 мм.рт.ст.;

1.Введение.

Вихретоковые методы контроля основаны на анализе взаимодействия внешнего электромагнитного поля с электромагнитным полем вихревых токов, наводимых возбуждающей катушкой в электропроводящем объекте контроля. В качестве преобразователя используют обычно индуктивные катушки. Синусоидальный ток, действующий в катушках ВТП, создает электромагнитное поле, которое возбуждает вихревые токи в электропроводящем объекте. Электромагнитное поле вихревых токов воздействует на измерительную катушку преобразователя, наводя в ней ЭДС или изменяя ее полное электрическое сопротивление. Регистрируя напряжение на зажимах катушки, получают информацию о свойствах объекта и о положении преобразователя относительно него. Особенность вихретокового преобразователя в том, что его можно проводить без контакта преобразователя и объекта. Получение первичной информации в виде электрических сигналов, бесконтактность и высокая производительность определяют широкие возможности автоматизации вихретокового контроля. Одна из особенностей ВТМ состоит в том, что на сигналы преобразователя практически не влияют влажность, давление и загрязненность газовой среды, радиоактивные излучения, загрязнение поверхности объекта контроля непроводящими веществами. Однако им свойственна малая глубина зоны контроля, определяемая глубиной проникновения электромагнитного поля в контролируемую среду. Сильное влияние на полученные результаты оказывают нелинейные искажения сигнала, подаваемого на задающую катушку. Для обеспечения универсальности, установка начальных условий, а также обработка полученной информации современных преобразователей должна осуществляться при помощи компьютеров, тогда каждый режим работы преобразователя будет обрабатываться отдельной программой. В данной работе разрабатывался генератор синусоидального сигнала для накладного вихретокового преобразователя, амплитуда тока в котором порядка 10 мА, а нелинейные искажения порядка 1%. Частота сигнала должна задаваться программным путем, с использованием микропроцессорной техники.

Ниже приводятся типы уже существующих преобразователей:
3. Блок возбуждения (БВ).

Блоком возбуждения в данном устройстве является широкополосный генератор напряжения синусоидальной формы. БВ состоит из синтезатора частот (СЧ) и
формирователя сигнала (ФС) заданной формы. Рассмотрим их структурные и электрические схемы более подробно.

3.1.2. Счетчики -делители частоты M и N.

Счетчик М служит для задания шага изменения частоты. Счетчик N необходим для обеспечения сетки частот изменяющихся с заданным шагом fог/M. Предполагается что счетчики управляются цифровым кодом с ЭВМ. Выбираем счетчики серии КР1554ИЕ10 (аналог -74ALS161AN фирмы National ,USA). Микросхема КР1554ИЕ10 - это четырехразрядный двоичный синхронный счетчик. Счетчик запускается положительным перепадом (фронтом) тактового импульса на входе С. Сброс всех триггеров счетчика в нулевое состояние осуществляется по общему входу R(инв.). Режим параллельной загрузки информации устанавливается подачей напряжения низкого уровня на вход разрешения параллельной загрузки PE(инв.) , при этом предварительно установленная на входах D0...D3 информация по фронту импульса на входе С записывается в триггеры счетчика. Для синхронного каскадирования микросхема КР1554ИЕ10 имеет вход разрешения счет ЕСТ , вход разрешения переноса ЕСR и выход переноса CR. Счетчик считает тактовые импульсы , если на входах ECT и ECR подано напряжение высокого уровня. Вход ECR последующего счетчика соединяется со входом CR предыдущего счетчика.

3.2. Формирователь сигнала (ФС).

Формирователем сигнала заданной формы является восьмиразрядный сдвиговый регистр с последовательной загрузкой и параллельной выгрузкой КР1533ИР8 (Аналог 74ALS164). Микросхема КР1533ИР8 представляет собой восьмиразрядный сдвиговый регистр с последовательной загрузкой и параллельной выгрузкой. Наличие двух входов последовательной загрузки A и B позволяет использовать один из них в качестве управляющего загрузкой данных: низкий уровень напряжения хотя бы одном из них по положительному фронту тактового импульса устанавливает первый триггер регистра в состояние низкого уровня напряжения , в то же время [RU1]высокий уровень напряжения на управляющем входе позволяет по другому входу осуществлять ввод данных в последовательном коде. Частота следования импульсов по входу С - не более 50 МГц , т.е. вполне пригодно т.к. максимальная частота дискретного синусоидального сигнала будет на выходе fвых = 50/16 ? 3МГц , что соответствует техническому заданию.

5. Список используемой литературы.

1) Справочник "Цифровые и аналоговые интегральные микросхемы", Москва, "Радио и связь" 1989 г.
2) Справочник "Изделия электронной техники. Цифровые микросхемы. Микросхемы памяти. Микросхемы ЦАП и АЦП", Москва, "Радио и связь" 1994 г.
3) Справочник "Резисторы", Москва, "Радио и связь" 1991 г.
4) Справочник "Расчет индуктивностей", Ленинград, "Энергия" 1970 г.
5) Справочник "Приборы для неразрушающего контроля материалов и изделий" том 2, Москва, "Машиностроение" 1986 г.